
www.manaraa.com

PACE: Pattern Accurate Computationally Efficient
Bootstrapping for Timely Discovery of

Cyber-Security Concepts
Nikki McNeil

Department of Mathematics
University of Maryland, Baltimore County

Baltimore, MD
ncmcneiL1@umbc.edu

Bogdan Czejdo
Department of Computer Science

Fayetteville State University
Fayetteville, NC

bcezjdo@uncfsu.edu

Robert A. Bridges
Computational Sciences

and Engineering Division
Oak Ridge National Laboratory

Oak Ridge, TN
bridgesra@ornl.gov

Nicolas Perez
Department of Computer Science
North Carolina State University

Raleigh, NC
neperez@ncsu.edu

Michael D. Iannacone
Computational Sciences

and Engineering Division
Oak Ridge National Laboratory

Oak Ridge, TN
iannaconemd@ornl.gov

John R. Goodall
Computational Sciences

and Engineering Division
Oak Ridge National Laboratory

Oak Ridge, TN
jgoodall@ornl.gov

Abstract—Public disclosure of important security information,
such as knowledge of vulnerabilities or exploits, often occurs in
blogs, tweets, mailing lists, and other online sources significantly
before proper classification into structured databases. In order to
facilitate timely discovery of such knowledge, we propose a novel
semi-supervised learning algorithm, PACE, for identifying and
classifying relevant entities in text sources. The main contribution
of this paper is an enhancement of the traditional bootstrapping
method for entity extraction by employing a time-memory trade-
off that simultaneously circumvents a costly corpus search
while strengthening pattern nomination, which should increase
accuracy. An implementation in the cyber-security domain is
discussed as well as challenges to Natural Language Processing
imposed by the security domain.

I. INTRODUCTION

This paper introduces PACE, a novel bootstrapping algo-
rithm for entity extraction, and an application to cyber-security
where domain concepts involving vulnerabilities and exploits
are learned from public text sources. Often vulnerabilities and
exploits are discussed in a variety of obscure yet publicly
accessible websites such as mailing lists, blogs, and twitter
feeds, long before proper classification into well-known, com-
monly referenced databases such as the National Vulnerability
Database (NVD), Common Vulnerability Enumeration (CVE),
Open Source Vulnerability Database (OSVBD), Exploit-DB,

The Department of Homeland Security sponsored the production of this
material under DOE Contract Number DE-AC05-00OR22725 for the man-
agement and operation of Oak Ridge National Laboratory.

This manuscript has been authored by UT-Battelle, LLC, under Contract
No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for United
States Government purposes.

and also before vendor patches or mitigations are released1.
As this valuable information is often buried in the world-wide
web, our overall goal is to automatically obtain this knowledge
by extracting entities from appropriate text sources, with a
target audience of security analysts.

While supervised methods for identifying and classifying
entities have experienced very accurate results, this paper
explores a semi-supervised technique, as no labeled training
data in the cyber-security domain is available. In order to
ensure the appropriate concepts are learned, semi-supervised
entity extraction, which almost exclusively is some form of
bootstrapping [12] is used with a small hand-labeled training
set. In particular, our algorithm, PACE, modifies the traditional
bootstrapping approach by storing contextual information with
known entity names.

The benefits of this new technique are multi-fold. Specifi-
cally, as patterns are only learned from the contextual instances
observed with known entities, PACE allows more accurate
pattern nomination than previous bootstrapping methods. Sec-
ondly, it obviates the need for extremely large corpora, al-
lowing PACE to be deployed in an operational setting where
documents are streamed into the corpus under analysis and
are discarded from the corpus after a fixed time. Lastly, PACE
uses a time-memory trade-off to circumvent a traversal of the
corpus previously necessary for pattern nomination.

II. TEXTUAL EVIDENCE OF VULNERABILITIES

As a driving example, we consider the following observed
sequence of events where a vulnerability and proof of concept

1http://nvd.nist.gov/, http://cve.mitre.org/, http://www.osvdb.org/, http://
www.exploit-db.com/

ar
X

iv
:1

30
8.

46
48

v3
 [

cs
.I

R
]

 1
1

O
ct

 2
01

3

mailto:nmcneil1@umbc.edu
mailto:bcezjdo@uncfsu.edu
mailto: bridgesra@ornl.gov
mailto: neperez@ncsu.edu
mailto:iannaconemd@ornl.gov
mailto:jgoodall@ornl.gov
http://nvd.nist.gov/
http://cve.mitre.org/
http://www.osvdb.org/
http://www.exploit-db.com/
http://www.exploit-db.com/

www.manaraa.com

Fig. 1. Timeline of publicly available information on vulnerability CVE-2013-3660 and related events.

exploit is discovered and discussed publicly online months
before proper classification into the aforementioned databases
(see Figure 1). In this case, a potential vulnerability in
Microsoft Windows is discovered and publicly disclosed on
Twitter and on a public email list of vulnerability researchers.
This vulnerability is confirmed by others, a proof of concept
exploit is released, and improved versions of this exploit code
follow. The vulnerability is added to all public vulnerability
databases after some delay; these entries are revised many
times as the situation develops and new information becomes
available. Similarly, the exploit code is added to Exploit DB
and is incorporated into the Metasploit framework. The vendor
later releases a patch and related security bulletin as part of
their normal patching process.

More generally, disclosure of software vulnerabilities falls
into three categories: public “full disclosure,” private “co-
ordinated disclosure,” or non-disclosure. Full disclosure in-
volves the researcher making information public as it be-
comes available, like the case above; coordinated disclosure
involves informing the vendor (e.g. Microsoft) who often will
disclose the vulnerability only after a patch is available. In
the remaining cases, the knowledge of the vulnerability can
be kept private or sold to a third party. The public and the
vendor will not learn of it until it is either used in a (zero-day)
attack or it is discovered independently by another researcher.
There is significant debate about the merits and ethics of
these approaches, and many intermediate approaches occur in
practice. Any of these methods may or may not include related
exploit code, generally as a proof of concept.

In any of these cases, automatically identifying the relevant
entities in online sources will provide more timely information
to security analysts, although the specifics of what, when, and
where the information is learned will of course vary. Also, in
each case, the same observations generally apply:

• Information usually appears in unstructured sources ear-
lier than in structured sources.

• There is often a discussion related to each event, and it is
often dispersed across several locations. (eg. a group of

related emails, tweets, Reddit comments, and blog posts.)
This discussion often adds important details, such as the
vulnerability’s expected impact in practice.

• Typically there is no single source for all of the relevant
information.

As other such examples have been observed, our hypothesis
is that much useful information may be discovered in a
more timely fashion with the development of natural language
processing tailored to the security domain.

III. BACKGROUND

Previous work in the intersection of Natural Language
Processing for understanding cyber-security concepts has been
undertaken. In [11] a combination of databases, Wikipedia,
and “off-the-shelf” tools are used to identify and classify
vulnerability entities. Very recent work of [10] address super-
vised learning for entity extraction in cyber-security, by hand-
labeling a small corpus of training data and using an “off-the-
shelf” entity recognizer. Our efforts also include a supervised
approach, but we focus only on bootstrapping here.

1) Bootstrapping Techniques for Entity Extraction: Almost
all semi-supervised techniques for entity extraction use a
bootstrapping technique [12], and follow a similar overall
cyclic structure. Given an entity type (such as “president” or
“vulnerability”) a bootstrapping algorithm requires a set of
known entity names, a set of known patterns (this is the usually
small training set referred to as “seeds”), and a text corpus
(usually large). A pattern is contextual information which
gives evidence for identifying a segment of text as an instance
of an entity. For example, a pattern for identifying presidential
names could be a proper noun directly followed by the words
“was inaugurated”. Traditionally, bootstrapping searches the
corpus for known patterns to produce candidate entity names,
which are then scored so only the most trusted names are
promoted to join the set of known entity names. The corpus
is also searched for instances of known entity names and
candidate patterns are nominated from the observed context.
Candidate patterns are then scored to determine promotion.

www.manaraa.com

Fig. 2. A cycle in traditional bootstrapping involves 2 traversals through the
corpus, one to nominate new patterns, one to nominate new entity names.

Fig. 3. A cycle in the new algorithm involves one traversal through the corpus
for nominating (entity name, context) pairs. Storing entity names with their
observed context facilitates more robust pattern selection without a second
corpus search.

This cycle may continue many times for a given corpus, as
new patterns and entity names may be learned on each cycle
[2], [4], [5], [8], [9]. A diagram of the process is provided in
Figure 2 . Although outside the scope of the current paper, it is
commonplace for this algorithmic setup to be implemented for
relation extraction, often simultaneously with entity extraction
[1], [2], [4], [5].

While all previous bootstrapping algorithms for entity ex-
traction follow the general workflow discussed above, vari-
ations in implementation details have yielded worthwhile
results. In [5], a predetermined ontology of entity and relation
types is used to impose constraints on the learned instances
that results in greater accuracy. Active learning can be incor-
porated by periodically requesting human feedback in order to
omit spuriously learned patterns and entities, as such drifting
is a common problem for bootstrapping techniques [7].

The advantage of bootstrapping is the minimal required
labeled data, which facilitates its use in almost any domain. On
the other hand, the perennial Achilles’ heel of bootstrapping,
and more generally of any machine learning with minimal
training data, is the acquisition of spurious results, causing
extracted terms to drift from the desired entity type. Traction
is gained in the details of the scoring algorithms and pattern
selection. We note that the overall goal of many previous
implementations of bootstrapping is to create a comprehensive
list of names for a given type; for example, see [2], [4], [5],
[6], [8]. Consequently, if a known entity name is overlooked
in one document but found in another, the desired outcome is
still accomplished. On the other hand, if concepts to be learned

are dissimilar (e.g. including both “president” and “athletic
team” as entity types), disparate text sources are necessary in
the corpus (e.g. both sports news and historical documents),
leading to semantic drift.

A large corpus is generally assumed, sometimes on the order
of tens of millions of documents, and, in fact, relied upon. For
example, in [4] extremely stringent rules are imposed when
nominating patterns so that only precise patterns are learned.
While this may reduce drift, recall suffers and the massive size
of the corpus is needed for the system to learn anything. An
additional limitation of such an approach is the computational
and temporal cost incurred. Brin’s [4] corpus included more
than 24 million documents, on which no implementation of
the algorithm was reported completed, and a smaller corpus
of approximately 5 million documents took a few days to
complete a cycle.

Considering the motivating example discussed in Section II,
the current goal is ideally to identify each occurrence of a
security entity in a document for timely discovery of new
vulnerabilities and exploits and to store this information in a
database; hence, this problem is more of a labeling task instead
of creating extensive lists of known entities. This difference
requires greater recall for each document. While Section V
discusses the many challenges imposed by the complexity of
the entities in the security domain, working in exclusively one
domain is an advantage; namely, considering only relevant
documents will inhibit drift, which may be accomplished by
using a decision classifier to discard irrelevant documents
when populating the corpus, as in [11].

IV. THE PACE BOOTSTRAPPING ALGORITHM

As cited above, semi-supervised techniques for entity ex-
traction have almost exclusively involved the bootstrapping
work flow described in Section III. The main contribution of
this paper is a novel algorithm which enhances the pattern
nomination process. Specifically, by storing known entities
along with their respective context, candidate patterns are
generated only from the context surrounding known (i.e.
seeded or learned) entities. Perhaps more importantly, we
expect PACE to lessen computational cost, as no corpus search
is necessary for nominating patterns. The algorithm for a fixed
entity type is outlined below, followed by a description and is
depicted in Figure 3.

PACE Algorithm
1) Initialize: Initiate a “Known Patterns” set and a “Known

[Entity, Context]-Pairs” set and populate both with
seeds. Set a number of iterations, n.

2) Learn Patterns from Known [Entity, Context]-Pairs:
a) Pattern Nomination: Compare known [entity,

context]-pairs to nominate new candidate patterns.
b) Pattern Scoring and Promotion: Score candidate

patterns and promote highest ranking to join the
“Known Pattern” set.

3) Learn New [Entity, Context]-Pairs:

www.manaraa.com

a) [Entity, Context]-Pair Nomination: Search the
corpus for known patterns to nominate new can-
didate [entity, context]-pairs.

b) [Entity, Context]-Pair Scoring and Promotion:
Score candidate [entity, context]-pairs and pro-
mote highest ranking to join the “Known [Entity,
Context]-Pairs” set.

4) Iterate: Repeat 2 & 3 n times.
Similar to traditional bootstrapping, PACE takes seed pat-

terns, seed entity names, and a text corpus as input, but
the seed entity names must come paired with the context in
which they were observed, similar to the recently released
Google Relation Extraction Corpus2. Operationally, two sets,
one of patterns and one of [entity, context]-pairs are initialized
(seeded) and expanded similar to usual bootstrapping. Hence,
the same name may appear multiple times, each with different
context in the seed [entity,context]-pair set. For preliminary
testing, context is defined as a radius of five words; that is,
a known entity name is stored with a five token prefix and
five token suffix, e.g. Table I. While it may be argued that
PACE necessitates an increase in training data, seed patterns
are generally manually chosen from a familiar contextual
observation of an entity name; therefore, this requirement
amounts to storing a handful of ten token context strings, a
trivial increase in storage, as seed sets are typically small.

The immediate boon of adding context to entity names is
a strengthening of the pattern nomination process, as only
context of known (i.e. seeded or promoted) entity names
is used in learning patterns. Because we are limiting the
field from which patterns candidates are learned to only
relevant contextual examples, less stringent rules for pattern
nomination (than previously used) yields worthwhile patterns
and increases recall. Moreover, this uniquely positions PACE
to work effectively on small corpora.

By contrast, traditional bootstrapping learns pattern candi-
dates by first identifying any instance of a known entity name
in the corpus, and it nominates a pattern from the context
regardless of whether the matching text string is actually in
reference to the desired entity type or not. While this may
be plausible (and useful, e.g. see name-patterns in IV-A1)
for entity names such as the president “Abraham Lincoln” or
the vulnerability effect “remote code execution,” which are
specific enough to almost always appear in reference to the
same entity, when considering more ambiguous names such as
“applications” (a common reference to software among other
uses), relying on the premise that every matching string is
indeed an allusion to a specific entity is naı̈ve and can quickly
lead to learning spurious results. Previous attempts to combat
this (e.g. see Brin [4]) is to nominate only extremely specific
patterns, which can severely limit recall and then compensate
by using an enormous corpus. Since their goal is to create a
list of entity names, so long as each name is identified once
in the corpus, their results do not suffer. The reliability on

2http://googleresearch.blogspot.com/2013/04/
50000-lessons-on-how-to-read-relation.html

both specific patterns and a large corpus is emphasized in
Brin [4], as is the computational cost where only a fifth of
the corpus is traversed in a number of days. As discussed in
the Results Subsubsection IV-A4, we tested the necessity of
a large corpus with very strict pattern nomination rules and
employing one of Brin’s pattern nomination limitations with
a very small corpus yielded the PACE algorithm to learn no
new patterns. In short, as patterns are learned from a trusted
set of contexts, less stringent rules on pattern formation are
necessary, which produces greater recall and facilitate using a
smaller corpus than previously possible.

While PACE is well-suited to handle small corpora, we
expect it’s performance to be superior on any sized corpus.
Since pattern candidates are nominated from the known [entity,
context]-pairs, the need to search the corpus is circumvented
during pattern nomination. As only one traversal of the corpus
(for finding new [entity, context]-pairs) is needed in PACE’s
cycle, the computational time should be approximately halved;
hence, many of the limitations of previous methods are over-
come by PACE.

A. Implementation Details

Here we describe the algorithmic details used in a prototyp-
ical implementation of PACE. We expect the technicalities to
be tuned to specific applications to increase performance and
we provide the details for completeness and as a starting point.
To obtain seeds, we hand annotated ten documents from online
sources3. Each instance of the following four entity types:
Exploit Effect, Software Name, Vulnerability Potential Effects,
Vulnerability Category, are labeled and manually extracted
along with their five-word prefix and five-word suffix as
seed [entity,context]-pairs. Twenty additional entity types were
labeled in the seeding process but occurred too rarely to
produce new instances in practice; hence, a larger seed set
will be necessary for these types.

1) Entities & Patterns: Examples of [entity, context]-pairs
are given in Table I. Unlike entity types used in previous
bootstrapping, many of the names required by this domain
are short phrases, and are discussed more in Section V.

Patterns can be any combination of prefix, name, suffix
strings to be matched in the corpus. More specifically, a pattern
will be denoted [prefix, name, suffix] where the prefix (suffix)
is up to five tokens immediately preceding (following) an
entity instance, and the name is up to ten tokens matching an
entity instance. In practice, words are stemmed using Python’s
Natural Language Toolkit 4 [3], and select stopwords including
punctuation tokens are removed before the strings are matched.
The trivial pattern, with all three components (prefix, name,
suffix) empty, is discarded (as it would match anything), but,
in general, any other combination is allowed. For example,
“allow attacker to ’ is a seed pattern for identifying

3http://www.computerworld.com/s/topic/85/Malware+and+Vulnerabilities,
https://community.rapid7.com/community/infosec/blog/2013/06/07/
keyboy-targeted-attacks-against-vietnam-and-india, https://groups.google.
com/forum/#!forum/rubyonrails-security, http://seclists.org/fulldisclosure

4http://nltk.org/

http://googleresearch.blogspot.com/2013/04/50000-lessons-on-how-to-read-relation.html
http://googleresearch.blogspot.com/2013/04/50000-lessons-on-how-to-read-relation.html
http://www.computerworld.com/s/topic/85/Malware+and+Vulnerabilities
https://community.rapid7.com/community/infosec/blog/2013/06/07/keyboy-targeted-attacks-against-vietnam-and-india
https://community.rapid7.com/community/infosec/blog/2013/06/07/keyboy-targeted-attacks-against-vietnam-and-india
https://groups.google.com/forum/#!forum/rubyonrails-security
https://groups.google.com/forum/#!forum/rubyonrails-security
http://seclists.org/fulldisclosure
http://nltk.org/

www.manaraa.com

TABLE I
ENTITY, CONTEXT PAIR EXAMPLES

Type Name Prefix Suffix
Vulnerability “bug” “the malware also abuses a” “in the way Android processes”

Vulnerability Potential Effects “inject arbitrary PHP code” “that could allow attackers to” “and execute rogue commands on”
Software Name “Android” “exploits previously unknown flaws in” “and borrows techniques from Windows”

Vulnerability Category “exploitable for remote “unlikely that this vulnerability is” “due to technical constraints”
code execution”

the Vulnerability Potential Effects entity type by matching
a three token prefix. To our knowledge, the use of name-
only patterns, in which the prefix and suffix are empty, is
novel to bootstrapping and allows quick identification of those
entity names which are very specific (such as the Vulnerability
Category name “code injection” which was also a seeded
pattern). Through both scoring and nominating patterns from
only the known entity context, PACE seeks to incorporate
name matching in specific cases and still preserve pattern
specificity.

2) Nomination of Entities & Patterns: Because entity
names are often a sequence of words, before a potential
entity name can be nominated, chunking (identifying short
noun phrases called “chunks”) is used to identify appropriate
phrases for names within the corpus. After an appropriate
name chunk is identified in the corpus, given a pattern [prefix,
name, suffix], we require the prefix and suffix to exactly match
the corresponding tokens preceding and following the name
chunk. Additionally, the name chunk itself must contain the
name. If these conditions are satisfied, the name chunk, along
with its context (five token prefix and suffix), is extracted
as a potential entity. Extracting chunks as entity names is
designed to err in favor of longer phrases being extracted for
two reasons. First, these phrases provide greater descriptive
accuracy which benefits a security analyst in cases where
single words are ambiguous. Second, the more specific a
known entity name is, the less drift the bootstrapping algorithm
will encounter.

Pattern nomination is accomplished by comparing known
[entity, context]-pairs within an entity type. Specifically, if
prefix1, name1, suffix1, and prefix2, name2, suffix2 are two
known [entity, context]-pair instances (five token prefix, at
most ten token name, and five token suffix) of the same type,
we construct a new pattern [prefix, name, suffix] as follows: To
define prefix (suffix), take the longest matching string between
prefix1 and prefix2 (suffix1 and suffix2) beginning from the right
(left); i.e., the string matching begins near the entity name
and works outward. Similarly, name is defined by matching
strings from right to left as generally the end of a name
phrase is most informative. Most name phrases end in nouns,
which are the most important word in understanding the phrase
(similar to a headword). If at least one of prefix, name, or
suffix is non-empty, the resulting pattern is nominated. For
large corpora and/or seed sets, comparison of more than two
[entity, context]-pairs is possible.

3) Scoring: Nominated candidates are collected, scored,
and ranked, so that the top 50% of entities (with their respec-

tive contexts) and 25% of patterns are promoted within each
type. Ideally, future testing will yield the promotion percentile
to be chosen as a function of the inputs. In [7], a study of
many scoring techniques is discussed, and the Basilisk method
outperforms the others, especially when human intervention
is included; consequently, we employed the Basilisk scoring
method for both candidates entities and patterns.

In order to score a given a candidate entity e, let p1, ..., pn be
the different patterns that matched and nominated e during the
corpus search, and let fj denote the number of known entities
pattern pj has previously matched. Then the Basilisk enity
score =

∑n
j=1

log(1+fj)
n . In traditional bootstrapping, Basilisk

scoring provides a separate function for pattern scoring that
relies on the ratio of the number of times the pattern is
observed with an (assumed) entity name to the total number
of times the pattern occurs in the corpus. Specifically, given
pattern p, if n is the number of times the pattern is observed
with a string matching the entity name in the corpus, and N
is the number of times the pattern is occurs in the corpus, the
Basilisk pattern score = n

N log(n). Since PACE circumvents
the costly corpus search by nominating patterns only from
those context instances observed with known entities, we
calculate n and N as counts relative to the set of [entity,
context]-pairs. The ratio n/N is commonly equal to one in
our prototypical experiments.

4) Results: Initial tests of a PACE bootstrapping prototype
have been performed on a small corpus of seven cyber-security
news articles5, and corpus documents were disjoint from the
documents used to produce seeds. Bootstrapping was iterated
until a cycle extracted no new entity names (six iterations).
Twenty-three patterns were learned and promoted, of which
three extracted inaccurate entities due to their generality,
fourteen were accurate but too specific to extract many entities,
and six were both accurate and useful in extracting many
entities. Twenty-one entity name phrases were extracted from
the articles and promoted, of which nineteen were accurate,
yielding a precision of 90%, but a recall of only 12%. Omitting
entity types for which only a few seeds existed provided a
recall as high as 38%. Clearly a larger seed set will improve
results, and more testing is needed to see PACE’s potential.

Part of Brin’s [4] scoring method is to disregard any patterns
occurring in different entity names belonging to the same
document. As discussed above, this inhibits drift but also
recall. Testing this rule on the corpus of seven documents
yielded zero learned patterns. Once again, Brin’s bootstrapping

5http://www.computerworld.com/s/topic/85/Malware+and+Vulnerabilities

http://www.computerworld.com/s/topic/85/Malware+and+Vulnerabilities

www.manaraa.com

relies on an extremely large corpus, whereas our goal is to be
able to extract as much information as possible from even a
single document.

V. CHALLENGES IMPOSED BY THE SECURITY DOMAIN

While many of the usual obstacles of entity extraction, such
as a lack of training data or semantic drift, are focal points
of previous research, our initial efforts in the cyber-security
domain have illuminated challenges not often addressed in the
literature.

• Inaccuracies in source documents. Often in online
sources, entities are discussed with incorrect names. Par-
ticularly glaring examples are the erroneous, synonymous
use of the terms “malware” and “exploit”, and the use of
“virus” as a blanket term for any malware. Consequently,
any automatic labeling which derives the appropriate en-
tity type from the contextual information will be confined
to the accuracy of the text itself. Currently, we have
focused on accurately labeling the documents, which
may not necessarily contain correct information for these
reasons.

• Alternate meaning of terms. Many of the names useful
to cyber-security are comprised of common terms which
take on a loaded meaning in our domain such as “exploit”,
“application”, or “ host”. As a primary mitigation for this,
we’ve only used text sources that are on-topic and plan
to automate this task via a decision classifier to ensure
relevance when populating the corpus. More importantly,
the PACE algorithm only learns patterns from known
(seeded or learned) [entity, context] instances, allowing
only those “true” occurrences of entity names to have
input to the learning process.

• Complicated entity names. Entities to be extracted in
our setting are often nuanced and complicated in compari-
son to previous bootstrapping efforts. For example, in [4],
[5], [6] entity types are stereotypical proper nouns, such
as Countries, Athletic Teams, Authors, or Book Titles,
which are easier to identify than the more esoteric entities
we desire, such as a Vulnerability Potential Effect, often
because the latter entities occur as short phrases and are
not as distinguishable by their syntactic features (e.g.
always beginning with a capital letter). Our current effort
has addressed this by chunking the text before pattern
matching to ensure descriptive phrases are extracted.

VI. FUTURE WORK & CONCLUSION

While the theoretical foundation for PACE is set, tuning it
to work well will require more work. Designing and testing
a more robust scoring for patterns, such as negatively scoring
patterns which are observed with a variety of entity types,
should increase performance. While an advantage exhibited
above was the ability of PACE to operate on a small corpus, we
expect PACE to excel in the presence of an enormous corpus.
We aspire to test PACE against a traditional bootstrapping
algorithm with common seeds and corpora to get true compar-
ative results, in particular with respect to speed, and pattern

accuracy. In addition to increasing the corpus size, adding
more seed examples should provide an immediate boost.

Operationally, PACE will fit into a larger architecture that
will collect data from the web and populate the corpus with
documents that are first deemed relevant by a decision clas-
sifier. We envision a document stream that allows documents
to live in the corpus for a fixed time or number of cycles
before being discarding; hence, the ability of PACE to work
on various sized corpora is necessary for it to run continuously
as the corpus is in flux. In addition, modifying PACE to
extract relations is a next step in truly gaining knowledge from
extracted concepts. Development of an ontology to organize
the entities into a graph is underway. Following the results
of [5], incorporating constraint conditions imposed by the
ontology should increase accuracy as well.

Overall, we have provided the foundation of a semi-
supervised tool, PACE, with makes novel contributions to
the bootstrapping process for entity extraction. Most notably,
PACE strengthens pattern nomination and obviates a costly
corpus search by storing contextual information along with
seeded and promoted entities. Additionally, PACE has been
shown to meaningfully extract desired entities in the presence
of a relatively tiny corpus, which increases recall on any corpus
document. Upon further development PACE should automat-
ically extract relevant relations, and work in an architecture
which allows fluid analysis of new documents.

REFERENCES

[1] E. Agichtein, L. Gravano, J. Pavel, V. Sokolova, and A. Voskoboynik.
Snowball: A prototype system for extracting relations from large text
collections. In ACM SIGMOD Record, volume 30, page 612. ACM,
2001.

[2] J. Betteridge, A. Carlson, S. A. Hong, E. R. Hruschka Jr, E. L. Law,
T. M. Mitchell, and S. H. Wang. Toward never ending language learning.
In AAAI Spring Symposium: Learning by Reading and Learning to Read,
pages 1–2, 2009.

[3] S. Bird, E. Klein, and E. Loper. Natural language processing with
Python. O’Reilly, 2009.

[4] S. Brin. Extracting patterns and relations from the world wide web. In
The World Wide Web and Databases, pages 172–183. Springer, 1999.

[5] A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka Jr, and T. M.
Mitchell. Coupled semi-supervised learning for information extraction.
In Proceedings of the third ACM international conference on Web search
and data mining, pages 101–110. ACM, 2010.

[6] A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka Jr, and T. M.
Mitchell. Wsdm 2010 supplementary online materials. http://rtw.ml.
cmu.edu/wsdm10 online/, 2010.

[7] A. Carlson, S. A. Hong, K. Killourhy, and S. Wang. Active learning for
information extraction via bootstrapping, 2010.

[8] R. Huang and E. Riloff. Bootstrapped training of event extraction
classifiers. In Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics, pages 286–
295. Association for Computational Linguistics, 2012.

[9] R. Jones. Learning to extract entities from labeled and unlabeled text.
PhD thesis, University of Utah, 2005.

[10] A. Joshi, R. Lal, T. Finin, A. Joshi, A. Joshi, R. Lal, T. Finin, and
A. Joshi. Extracting cybersecurity related linked data from text. In
Proceedings of the 7th IEEE International Conference on Semantic
Computing. IEEE Computer Society Press, 2013.

[11] V. Mulwad, W. Li, A. Joshi, T. Finin, and K. Viswanathan. Extracting
information about security vulnerabilities from web text. In Web Intelli-
gence and Intelligent Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM
International Conference on, volume 3, pages 257–260. IEEE, 2011.

[12] D. Nadeau and S. Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

http://rtw.ml.cmu.edu/wsdm10_online/
http://rtw.ml.cmu.edu/wsdm10_online/

	I Introduction
	II Textual Evidence of Vulnerabilities
	III Background
	III-1 Bootstrapping Techniques for Entity Extraction

	IV The PACE Bootstrapping Algorithm
	IV-A Implementation Details
	IV-A1 Entities & Patterns
	IV-A2 Nomination of Entities & Patterns
	IV-A3 Scoring
	IV-A4 Results

	V Challenges Imposed by the Security Domain
	VI Future Work & Conclusion
	References

